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Capacity of diluted multi-state neural networks 

D BolMt and J van Mourik 
lnstituuf voor Thenretische Fysica een Interdisciplinair Cent" vwr Neurale Netwerken, KU 
Leuven, B-3001 Leuven. Belgium 

Received 19 April 1993, in final form 19 November 1993 

Abstract. The optimal storage capacity is studied for diluted nehvorks with multi-state neurons 
and continuous respectively discrete couplings, wiihin the replica-symmeuic Gardner approach. 
Ihe Gardner-Wda line, the de Almeida-Thouless line and the m e n I m p y  line are mmpared 
and the validity of the replica-symmelric approximation is discussed in detail. The distribution 
of the synaptic wuptings is determined. The results are analysed in terms of Lhe number of states 
of the neumn, the distribution of the stored palkms, the amount of dilution and the number of 
discrete values for the couplings. 

1. Introduction 

This paper is concerned with the storage capacity of diluted multi-state networks based 
upon the ns-king spin-glass. Both spherical models with continuous synaptic couplings 
and models with discrete local constraints on the couplings are considered. Within the 
replica-symmetric Gardner theory in the space of couplings [1,2] fixed-point equations are 
discussed for the relevant order parameters. In order to look for optimal storage of the 
patterns, only annealed dilution [3] is being considered. 

For the continuous coupling models an analytic expression is derived for the Gardner- 
Demda (GD) optimal capacity ac as a function of the dilution f. Furthermore the de 
Almeida-Thouless (AT) condition [4] is examined to study the local stability of the replica- 
symmetric solution in the full order parameter space. This leads to values for the capacity 
a in function of f referred to as the AT line. Both lines are compared for different values 
of the number of neuron states and for different distributions of the stored patterns. Finally 
the distribution of the coupling coefficients 131 is determined. 

For models with discrete couplings there is a third line of a-values of interest, i.e. the 
line where the quenched entropy, being the logarithm of the number of states available to 
the system in the space of couplings, vanishes [5-71. Again a comparison is made between 
this zeroentropy (E) line and'the two other lines for different values of the number of 
neurons, the number of couplings and different distributions of the patterns, to find the 
optimal a consistent within the approximation used. Also the distribution of the coupling 
coefficients is discussed. 

Some of the underlying motivations behind this work are the study of locally connected 
architectures, the study of robustness against malfunctioning of some of the neurons and 
the fact that the dynamics of such networks (in the case of extreme dilution [8,9] can be 
completely described analytically. For a more detailed discussion and additional references 
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see [3]. Moreover on a more technical level one would like to get a better understanding 
of the effects causing replica symmetry breaking (RSB). In this respect it is argued here 
that for multi-state models with ns > 2 the convexity argument used for ns = 2 models to 
show that RSB is precluded no longer holds. The same has been seen for graded response 
neurons [lo]. Furthermore it is shown that for any finite degree of dilution RSB already 
occurs for a loading a lower than the GD optimal a;. In models with discrete couplings 
this may already happen for values of a below the ZE values, indicating that in these cases 
a calculation of the entropy is needed to at least first order in the RSB approximation. 

These discussions generalize and extend some of the results on fully connected ns = 2 
Hopfield-type networks [12] and ns-king networks [ l l ,  121 with continuous synaptic 
couplings. For these system the replica symmehic approximation is found to be stable. 

They also extend the analysis for discrete synaptic couplings of fully connected ns = 2 
models [2,5,7]. There it has been found that the replica symmetric approximation is no 
longer valid and that am < LYAT c MOD.  

Finally the analysis of this work also extends the treatments of [3] and [61 on diluted 
Hopfield systems with continuous and binary couplings, respectively. 

The rest of this paper is organized as follows. In section 2 the multi-state network 
models are introduced. In section 3 the replica-symmetric approximation to Gardner’s space 
of interaction approach is discussed in terms of the relevant order parameters characterizing 
the volume (number of solutions) for models with continuous (discrete) couplings. In 
section 4 the numerical solutions for the GD-, AT-, and ZE line for the loading capacity a 
are analysed and compared in terms of the number of states of the neuron, the distribution 
of the stored patterns, the amount of dilution and the number of discrete values for the 
couplings. Since the number of possibilities for chosing the different parameters defining 
the models is extremely high, an exhaustive treatment is not within the aims of the present 
work. In section 5 the validity of replica symmetry is discussed in detail. Section 6 contains 
a summary of the most important aspects of this study. 
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2. The model 

Consider a network of N neurons taking the ns .different values 

-1 = s, < . .’ < Sk c . . . < Sns = +l. (1) 

The dynamics of the system is characterized by the following transition probabilities: 

with u(t) = {uj(t), i = 1,. . . , N) where ui(t) is the state of neuron i at time t and with 
,9 = $ the inverse temperature. The quantity Ei is given by 

E;[ulhi] = -$(2hju - a d )  (3) 
with hi the local field 

where the Jf j  denote the synaptic couplings and the cij take the value 1 when the neurons 
i and j are connected and 0 otherwise. The fraction of connected neurons is denoted by f. 

The term au2 in (3) favours or discourages high activities, i.e. the highest (in absolute 
value) neuron states are strengthened (a < 0) or suppressed (a z 0). For a < 0 this 
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dynamics becomes the usual two-state signum dynamics. Hence the storage capacity for 
random multi-state patterns is trivially zero. For a > 0 this parameter is a measure of the 
separation between the plateaus of the gain function [ I l l  and the dynamics can be written 
in the form 

ui(t + 1) = s o Ei[slhi(a(t))l < Ei[ulbi(u(t))] (5) 
In the noiseless case ( p  --f CO) the dynamics becomes deterministic: q ( t  + 1) is that state 
out of { S a ]  that minimizes Ei[ulhi(a(t))l. 

We want to store p random patterns .$” = (6:. i = 1,. .., N ) ,  p = 1, .  . ., p ,  obeying 
the following probability distribution 

Vu E {sk] \ {s) V i .  

nr 

P(&? = c ( 1  + br)/ns 8(fr - S k ) .  (6) 
k=l 

This distribution is well defined if bk E 1-1, ns - 11 and XE, b k  = 0. We furthermore 
suppose that the stored patterns are uncorrelated with ((e)) = 0 and ((e2)) = I (the symbol 
((. . .)) denotes the average over the distribution of the random patterns). At this point we 
remark that the parameters b k  dlow us to give more weight to the values Sk in the middle 
of the interval 1-1, +I]. In this way we are able to mimic a Gaussian distribution of the 
patterns. 

The condition for pattern p to be a fixed point of the dynamics is given by (5) for 
s = .$‘, Vi.  p. In order to have a large basin of attraction proportional to K we have to 
require [Ill 

(7) hi(€’) E (o(er) f K, B(6r) - K )  vi, p 

with 

and K given by 

In the following we consider models with continuous and models with discrete synaptic 
couplings Jij .  

3. Replica symmetric theory 

We apply Gardner’s space of interaction approach [l] to study the optimal capacity of these 
multi-state models with annealed dilution within replica symmetry 1131 in function o f f .  K ,  

b k  and a .  The capacity (Y of the network is defined as the number of stored patterns divided 
by the number of neurons, i.e. 01 = p / N .  

From now on we assume, for convenience, an equidistant distribution for the values sk 

of the neurons reading 
2(k - 1) 

sk=-l+-  k = 1, .. . ,ns.  
n s - 1  ~: 
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Furthermore. we will use the shorthand notation 
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3.1. Continuous couplings 

To fix the degree of dilution and to normalize the non-zero connections we have to impose 
the following global constraints 

Focusing our attention on a specific neuron i we start from the following volume in the 
space o f  couplings 

where 

T&I . . . = dc . . . S(C) + dcS(c - 1) d J  . . . . (14) s s s 
This restricted trace is introduced to get the relevant volume for the couplings determined 
by the constraints imposed by the stored pattems. In this way we avoid adding a constant 
volume due to the integration over the couplings for which cij = 0 [9. Following [I] 
we use the replica method to evaluate U = limN+= N-'{(InV)). Assuming that replica 
symmetry is unbroken we get the result 

(15) 
f v = U G I  4- Gz + -=(@+io - 440) 

with 

where 

The four order parameters @, &,, 6 and 40 appearing in these expressions have the 
following meaning: qo = 1 - q where q is the overlap between two solutions in the 
coupling space, ++t expresses the first condition in (12) and $0 and rj are conjugate variables. 
For these order parameters fixed-point equations can be derived in the normal way. 
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For general values of (Y and f these fixed-point equations have to be solved numerically. 
To study the optimal capacity of the network according to the GD criterion, one considers 
the limit qo + 0. This can be done analytically in a manner anologous to [3], leading to 

df) = (f + 2~ exp(-u')/Jj?)df = 1) (19) 

(20) 

where U and f are related through f = erfc(u). For a detailed discussion of the fully 
connected case, f = 1, we refer the reader to 1111. 

Another value of interest of (Y is given by the requirement of stability of the replica- 
symmetric approximation we have used, i.e. the AT criterion. To check this stability it 
is sufficient to examine if the sign of the product of the eigenvalues of the tranverse 
fluctuations, the so called replicon eigenvalue h~ [4], is negative. 

3.2. Discrete couplings 

The number of discrete values of the Jij is denoted by n,. We assume for convenience an 
equidistant distribution of these values between -1 and +l. 

cu,-'(f = 1) = (( LB Dz (z + E)' + /+- Dz (z + 0)')). 
-0 

We start from the number of solutions Q replacing the fractional volume 

where 

Jdc  .. . S(c) + dcS(c - 1) Tr, ... . J (22) 

Again the restricted trace is introduced in order to avoid adding an entropy to couplings for 
which cjj = 0 (compare (14)). Furthermore the value 0 for the couplings J is excluded in 
order to avoid double counting of solutions. 

We then evaluate the quenched entropy, S, = limN+m N-'((ln Q)), over the different 
sets of memories using again the replica method. We obtain 

(23) 
with GI  formally given by (16) and 

T(,,, . . .= 

= ~ G I  + G2 + (f/2)(@ + &Q - (iqo) 

where 

The five order parameters 6 ,  $0. @. qo and Q now describe the following: qo = Q - q 
where q is the overlap between two solutions in the coupling space and Q is the self-overlap 
of a solution; the others have the same meaning as before. Again, fixed-point equations can 
be derived. 

To study the optimal capacity there are now three values of interest [7]. Besides the 
GD- and AT criteria, the ZE criterion is also relevant. We remark that, in contrast with the 
spherical coupling models no closed expression for ac is found in the GD limit. Furthermore, 
the order parameters have to be rescaled in order to keep them finite (8' = q$(i. $' = qo@, 

Numerical solutions for these three values will be analysed and compared in section 4 
4; = qo?d. 

leading to an upper limit for the optimal storage capacity within replica symmetry. 
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3.3. Distribution of couplings 

It is interesting to write down the distribution of the couplings following 131. For continuous 
and discrete couplings for which the corresponding cij # 0 one gets, respectively 
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In the GD limit the expression (26) formally simplifies to the formula obtained in [3] 
for the ns = 2 diluted network. For discrete couplings the GD l i t  of (27) is given by 

where 

These dishbutions of the couplings J i j  are explicitly dependent upon f. The dependence 
upon ns. a ,  K and bx only occurs through the fixed-point values of the order parameters. 

4. Results for the optimal capacity 

4.1. Continuous couplings 

Analysing the general behaviour of the fixed-point equations we find that for fully connected 
models, i.e. f = 1, the GD solution may be stable or unstable with respect to replica 
symmetry, depending on the gain parameter a, the number of spin states ns and the 
diskibution of the patterns bk. In fact, for ns > 2, the replicon eigenvalue ,l~ is negative 
for a large enough, while hp. may become positive for a small. For the stability parameter 
K = 0 a straightforward calculation leads to the 'identity 

sign(hR) = sign(&zc/.3a). (30) 
This has also been seen in graded-response networks for any input-output relation that is 
monotonically non-decreasing (or non-increasing) [lo]. This implies the existence of an 
optimal sop,, that can be 0 or finite, for which a; is maximal and AR is vanishing. It also 
means that for a c aopt replica symmefry is broken and that for a > aopt replica symmetry 
is valid. For all cases with equidistant spins and bk = 0 that we have examined we find 
that aopt = 0. 

For K # 0 equation (30) is to be replaced by the following: 

(31) such that - = 0 : AR < 0. 

In general, increasing K lowers ac and enhances the stability against RSB. We remark that 
for given K, a is bounded from below (recall (9)). This behaviour is illustrated in figure 1 
for a ns = 3 model. 

Finally we find that in the OD limit the solution is unstable against RSB for all diluted 
models, i.e. for any f f 1. This can be seen in figure 2 where the GD line and the AT line 
are plotted as a function of f for the ns = 2 model with K = 0 and for a ns = 3 model 

aaC 
aa 

at 
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f 

Figure 1. The storage capacity ci, and the replicon 
eigenvalue A.n as a function of the gain parameter a for 
the continuous n~ = 3 model with bt = I-0.5, 1, - O S }  
andr = 0.03 (solidcurve)respclively~ = 0.1 (dashed 
"e). 

Figure 2. The CD and AT line for the storage capacity 
ci as a function of the dilution f for the continuous 
n~ = 2 model with K = 0 (solid curves) and for the 
n~ 3 model with bk = {-OS. 1. -0.5) and II = 0.23. 
K = 0 (dotted curves) and K, = 0.0488 (dashed curves). 

for two values of K .  The results on the ns = 2 model (solid lines) confirm the GD line 
first calculated in [3]. It further demonstrates that the GD limit is stable at f = 1. For 
the ns = 3 model this limit is unstable at this point for small K. There exist a critical K, 
depending on a (in the case shown K~ = 0.0488 for a = 0.23). above which the replica 
symmetric solution is locally stable at f = 1. 

In the case of extreme dilution, f --c 0 (U -+ m) , we see that both aGo and (YAT 

behave as (Y - - f lnf  for all ns. The former can be shown analytically using (19x20). 

4.2. Discrete couplings 

For any finite number of coupling values n ,  the solution for the capacity on the GD line is 
unstable with respect to RSB and the quenched entropy (23) is negative. 

In the fully connected ns = 2 model we find the result of [7] (see also [SI) that the 
ZE criterion gives the optimal storage capacity. For fully connected ns z 2 models we find 
that the ZE solution is stable with respect to RSB, for all the combinations of the parameters 
n,, a, K and bk we have examined. If we impose an additional constraint on these models 
by fixing the self-overlap Q to a value between min(J2] and max[J2} this is no longer 
true in general. In figure 3 we show a situation where for increasing n, the ZE solution 
approaches the GD solution while the AT solution does not. This stresses the role of the 
spherical constraint in the occurrence of RSB, as we will discuss in further detail in the next 
section. 

In the case of dilution, f # 1, we find that there are models in which the ZE solution 
is unstable with respect to RSB even for ns = 2 and no additional constraint on Q, in 
contrast with the f = 1 case. For increasing n, the ZE solution will eventually approach 
the GD solution while the AT solution not necessarily does so. In figures 4-6 we present 
some of the different types of behaviour that we have observed for the GD, AT and ZE line 
as a function o f f .  

In the case of binary neurons we see in figure 4 that for n ,  = 2 the ZE line is the lowest 
within the whole range o f f ,  for higher values of n ,  and decreasing f it stays the lowest 
until a certain value of the latter where it crosses the ZE line. Furthermore for increasing n~ 
the ZE line approaches the GD line while the AT line approaches the GD line only in f = 1 
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1.0 0.0 
10 0.2 0.4 0.8 0.8 1.0 

U, f 

Figure 3. The OD, AT and ZE values for the storage 
capacity Q as a function of nr for the disaete ns = 3 
model with U = 0.3, Y = 0 and bk = (-0.5.1, -0.5) 
(tliangles, squaw and diamonds on the dashed curves). 
The points on the solid curyes are rerults with the self- 
overlap Q frxed to be 0.5. 

Figure4. TheOD. A~andZEline forthestoragecapacity 
Q as a function of the dilution f for the ns = 2 model 
with nr = 2 (solid curves) and nr = 6 (dashed curves) 
both with Y = 0. 

1.6 

1.4 

~ 

_.................I... GD 

I ._e- 
~ * -  ... ........... "j ,,,fl/--q 

1.0 "y, : ,,' , ' ,  
os ; ,, 

::. 
0 4  

0 2  

0.0 
0.0 09 0.4 0.6 0.8 1.0 

f 

a;" 

0.6 

0.6 

0 2  

0.0 
0 0  0.2 0.4 0.6 0.8 1.0 

f 

Figure 5. As figure 4, but for the nl = 6,ns = 3 
mo&lwi th~=O,a=0 .3 .b~=(O.0 .0 )andQ=0.5  modelwitha=0.3,r=O,bx=[-0.5,1.-0.5). 
(solid lines) and for the nr = 12. ns = 3 model with 
Y = 0.0 = 0.3, bk = (-0.5. 1, -0.5) and Q = 0.5 
(dashed lines). 

Figure 6. As figure 4. bul for the n l  = 4,"s = 3 

such that the crossing point of the AT and the ZE h e  eventually shifts to f N 1. 
In figure 5 we present the a - f diagram for some ns = 3 models where the self-overlap 

Q is fixed to 0.5. A completely different behaviour is found for the ordering of the AT and 
ZE solutions depending on the values of n, and 4. We note (solid curves) that a= c CLAT 

for K = 0 and f - 0 or f - 1, while for intermediate f this inequality is reversed. For the 
other case (dashed curves) a= < (YAT only for f - 0. Finally figure 6 shows the results of 
a similar model without fixing Q. There is a range for f where 3 solutions for the AT line 
are found. This range shifts to small f with increasing stability parameter K .  For all models 
we have looked at the ordering a= c QT < wjD remains valid in the neighbourhood of 

Finally we have checked numerically that all (YGD, am and cm curves show a -f In f 
f -0. 

behaviour in the limit of extreme dilution f 4 0. 
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4.3. Distribution of couplings 

Concerning the distribution of the couplings for the continuous models we find that for 
CY = 0 it is a Gaussian with mean zero and variance one. For increasing a it converges, in 
the GD limit, towards the distribution also found in [3] i.e. a Gaussian with mean zero and 
variance l/cf with a gap in the middle. The width of this gap is only dependent upon f 
and grows with increasing f. Furthermore this limiting distribution is independent of the 
parameters ns. a, K and &k. At intermediate a < (YGD the distribution is dependent upon 
these parameters, hut only through the fixed-point values of the order parameters. 

2 0  

J5 

Figure 7. The distribution of the couplings for the 
discrete n~ = 12,"s = 3 model with f = 0.5, a = 
0.3. Y ~ =  0 and bb = (-05, 1. -0.5). The squares 
indicates the results with no constraints on Q, the 
circles with Q = 05. The dashed c w e s  are for 
ct = 0.862 (Q fne) and a = 1.15 (Q = 0.5), the 
solid c w e s  for the limiting values rr, = 1.47 (Q 
free) and rr, = 1.404 (Q = 0.5). 

q .to 

.oo 
-10 -0.5 0.0 0.5 in 

I 

For the models with discrete couplings figure 7 shows the height of the peaks in (27) and 
(28). Also the enveloping curves are presented (solid and dashed curves). In the GD limit 
this enveloping curve has a gap, such as in the case of continuous coupling models. The 
probability of having small coupling values vanishes for the models with and without the 
extra spherical constraint on Q. For models with Q fixed, the gap is broader (the two 
inner J values are not present). The vanishing of these coupling values is not observed 
for all models, an example being models with low dilution and a small number of n,. 
The probability of having extreme cnupliig values may become very small, especially for 
models without a constraint on Q (see the squares on the solid curves in the figure) but 
it never vanishes. For low a the distribution is mostly centred around the origin (e.g. the 
squares on the dashed curves). For intermediate a < ~ G D  a dip around the origin already 
develops (e.g. the circles on the dashed curves). 

We end with the remark that the distribution of the local fields [ 141 is independent of 
the amount of dilution f and takes the same form for both continuous and discrete coupling 
models as the one given in 1121. 

5. Discussion 

In this section we give a qualitative discussion of the validity of the replica-symmetric 
approximation used in the foregoing calculations. In particular we want to look at the 
popular argument stating that the convexity and connectedness of the solution space 
precludes RSB. This argument has been seen to break down in fully connected graded- 
response networks with continuous couplings and monotone non-decreasing input-output 
relations due to the spherical constraint ([lo]). 

For binary neurons, ns = 2, each of the stored pattem divides the (N - 1)-dimensional 
space of couplings for each neuron i by a hyperplane into two regions leading to, respectively 
the desired output or the wrong output for the stored pattern. 

For multi-state neurons, ns > 2, a stored pattern may divide the space of couplings by 
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two paralleLhyperplanes (for the intermediate spin-states Ish1 < 1) or one hyperplane (for 
the extremal spin-states lskl = 1). For the intermediate spin-states the coupling vector has 
to lie between the two hyperplanes, for the extrema1 spin-states it has to lie ou the correct 
side of the hyperplane. 

All these planes lie at a distance of order I/& from the origin, or in the origin for 
K = 0 and ns = 2, when one takes the length of the coupling vector of order 1, i.e. f in 
the continuous coupling models (see (12)) and fQ in the discrete ones. The part of the 
solution space where the coupling vector has to lie to give the correct output is called the 
version space. 

For ns = 2 the version space has a conelike shape, with the top in the origin for 
K = 0 or at a distance of order I/& of the origin for K # 0. So this space and the 
intersection with any sphere with a radius of order 1 are connected and convex. For ns > 2 
the version,space no longer has a cone l i e  shape but it is still convex and connected, while 
the intersection with any sphere with a radius of order 1, however, not necessarily is. The 
latter depends on the ratio of the intermediate and extremal spin-states described by the 
parameter bk and on the parameters a and K .  

For the fully connected ns = 2 models with continuous couplings this implies that, until 
the moment where the version space shrinks to zero (i.e. the GD point), no RSB occurs. For 
this type of model with ns > 2 it tells us that RSB is not precluded. In the case of dilution 
replica symmetry is broken at the GD point. This can be understood in the following way. 
The permitted solutions have to lie in the intersection of (1 - f)(N - 1) of the (N - 1) 
hyperplanes indicating a zero value of the couplings. In this case the permitted volume is 
no longer connected and hence RSB is not precluded. 

For the models with discrete couplings there are nJ parallel hyperplanes for each 
coupling indicating the permitted values for that coupling. This gives a discrete set (the 
corners of a hypercube for nJ = 2) of possible solutions in the coupling space. So the 
solution space is again not connected and RSB is also not precluded here. If we dilute these 
models or if we impose an additional constraint on these models with ns 2 by fixing the 
self-overlap Q, we observe that the version space may become disconnected (AT) already 
before there are no more points of the discrete set of solutions in it (E). This indicates the 
role of the spherical constraint in the occurrence of RSB. 

6. Summary 

D Boll6 and J van Mourik 

In this paper we have analysed the capacity of diluted multi-state network models with 
continuous and discrete couplings, respectively. Within replica symmetry we have studied 
in some detail the different criteria to determine the optimal storage capacity : the Gardner- 
Derrida criterion taking the overlap between two solutions in the coupling space to be 
maximal, the de Almeida-Thouless criterion checking the local stability of the replica 
symmetric solution in the full space of solutions and, in the case of discrete coupling models 
the zero-entropy criterion determining the vanishing of the replica-symmetric quenched 
entropy. 

The most important results for all combinations of the relevant parameters we have 
examined are the following. 

(i) All (Y curves show a -f In f behaviour in the limit of extreme dilution f + 0 
(ii) If the distribution of the couplings shows a gap the replicon eigenvalue becomes 

+CO in the GD limit and hence replica symmetry is broken. For spherical couplings this 
occurs for any degree of dilution f < 1, for discrete couplings it always happens, i.e. for 
any f. 
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(iii) For,continuous couplings and br = 0, O~AT and CUGD always coincide at f = 1. 
(iv) For discrete couplings the ordering am c (YAT c CUGD is always valid at f - 0. 

If there is no extra spherical constraint this ordering aza c (YAT c a o ~  also stays valid at 
f - I .  

Thus for discrete couplings the vanishing of the replica-symmetric quenched entropy is, 
in general, no longer a good criteron to determine the optimal capacity. Therefore a study 
of replica symmetry breaking effects is needed. 
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